Exemplo de média móvel auto-regressiva
Estou realmente tentando, mas lutando, para entender como Autoregressive e Moving Average trabalho. Eu sou muito terrível com álgebra e olhando para ele não melhorar realmente a minha compreensão de algo. O que eu realmente amo é um exemplo extremamente simples de dizer 10 observações dependentes do tempo para que eu possa ver como eles funcionam. Assim, digamos que você tem os seguintes pontos de dados do preço do ouro: Por exemplo, no período de tempo 10, o que seria a média móvel de Lag 2, MA (2), ser OU MA (1) E AR (1) ou AR (2) Eu tradicionalmente aprendi sobre Moving Average sendo algo como: Mas ao olhar para ARMA modelos, MA é explicado como uma função de termos de erro anterior, que eu não posso obter a minha cabeça ao redor. É apenas uma forma mais elegante de calcular a mesma coisa que eu encontrei este post útil: (Como entender SARIMAX intuitivamente), mas whist ajuda a álgebra, eu não posso ver algo realmente claro até que eu vejo um exemplo simplificado dele. Dado os dados do preço do ouro, você deve primeiro estimar o modelo e, em seguida, ver como ele funciona (impulso-resposta análise previsões). Talvez você deve limitar a sua pergunta para apenas a segunda parte (e deixar de lado a estimativa). Ou seja, você forneceria um AR (1) ou MA (1) ou qualquer modelo (por exemplo, xt0.5 x varepsilont) e pergunte-nos, como funciona este modelo específico. Para qualquer modelo AR (q) a maneira fácil de estimar o parâmetro (s) é usar OLS - e executar a regressão de: pricet beta0 beta1 cdot preço dotso betaq cdot preço Permite Lo (em R): (Ok, então eu trapaceei um pouco e usei a função arima em R, mas produz as mesmas estimativas que a regressão OLS - experimente). Agora vamos dar uma olhada no modelo MA (1). Agora, o modelo MA é muito diferente do modelo AR. O MA é a média ponderada do erro de períodos passados, onde como o modelo AR usa os valores de dados reais dos períodos anteriores. O MA (1) é: pricet mu wt theta1 cdot w Onde mu é a média, e wt são os termos de erro - não o previoes valor de preço (como no modelo AR). Agora, infelizmente, não podemos estimar os parâmetros por algo tão simples como OLS. Eu não vou cobrir o método aqui, mas a função R arima usa likihood máximo. Vamos tentar: Espero que isso ajude. (2) Quanto à questão MA (1). Você diz que o residual é 1.0023 para o segundo período. Isso faz sentido. Minha compreensão do residual é a diferença entre o valor previsto e o valor observado. Mas você diz então que o valor previsto para o período 2, é calculado usando o residual para o período 2. É isso certo Isn39t o valor previsto para o período 2 apenas (0.54230 4.9977) ndash Will TE 17 de agosto 15 às 11: 24A RIMA significa Autoregressive Integrated Modelos de média móvel. Univariada (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série baseada inteiramente em sua própria inércia. Sua principal aplicação é na área de previsão de curto prazo, exigindo pelo menos 40 pontos de dados históricos. Ele funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de outliers. Às vezes chamado Box-Jenkins (após os autores originais), ARIMA é geralmente superior às técnicas de suavização exponencial quando os dados são razoavelmente longos ea correlação entre as observações passadas é estável. Se os dados forem curtos ou altamente voláteis, então algum método de alisamento pode funcionar melhor. Se você não tiver pelo menos 38 pontos de dados, você deve considerar algum outro método que ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaridade. A estacionariedade implica que a série permanece a um nível razoavelmente constante ao longo do tempo. Se existe uma tendência, como na maioria das aplicações econômicas ou de negócios, os dados NÃO são estacionários. Os dados também devem mostrar uma variação constante em suas flutuações ao longo do tempo. Isto é facilmente visto com uma série que é fortemente sazonal e crescendo a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem que estas condições de estacionaridade sejam satisfeitas, muitos dos cálculos associados ao processo não podem ser calculados. Se um gráfico gráfico dos dados indica nonstationarity, então você deve diferenciar a série. A diferenciação é uma excelente maneira de transformar uma série não-estacionária em uma estacionária. Isto é feito subtraindo a observação no período atual do anterior. Se essa transformação é feita apenas uma vez para uma série, você diz que os dados foram primeiro diferenciados. Este processo elimina essencialmente a tendência se sua série está crescendo em uma taxa razoavelmente constante. Se ele está crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferença os dados novamente. Seus dados seriam então segundo diferenciados. Autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número específico de períodos separados estão correlacionados entre si ao longo do tempo. O número de períodos separados é geralmente chamado de atraso. Por exemplo, uma autocorrelação no intervalo 1 mede como os valores 1 intervalo de tempo são correlacionados um ao outro ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados dois períodos separados estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo de -1 implica uma correlação negativa elevada. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de autocorrelação para uma dada série em diferentes defasagens. Isto é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em séries temporais estacionárias como uma função do que são chamados parâmetros auto-regressivos e de média móvel. Estes são referidos como parâmetros AR (autoregessive) e parâmetros MA (média móvel). Um modelo AR com apenas 1 parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo de ordem 1 X (t-1) (T) o termo de erro do modelo Isto simplesmente significa que qualquer valor dado X (t) pode ser explicado por alguma função de seu valor anterior, X (t-1), mais algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse .30, então o valor atual da série estaria relacionado a 30 de seu valor 1 período atrás. Naturalmente, a série poderia estar relacionada a mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente anteriores, X (t-1) e X (t-2), mais algum erro aleatório E (t). Nosso modelo é agora um modelo autorregressivo de ordem 2. Modelos de média móvel: Um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora estes modelos parecem muito semelhantes ao modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros de média móvel relacionam o que acontece no período t apenas aos erros aleatórios que ocorreram em períodos de tempo passados, isto é, E (t-1), E (t-2), etc., em vez de X (t-1), X T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo MA pode ser escrito da seguinte forma. O termo B (1) é chamado de MA de ordem 1. O sinal negativo na frente do parâmetro é usado apenas para convenção e normalmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima diz simplesmente que qualquer valor dado de X (t) está diretamente relacionado somente ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso dos modelos autorregressivos, os modelos de média móvel podem ser estendidos a estruturas de ordem superior cobrindo diferentes combinações e comprimentos médios móveis. A metodologia ARIMA também permite a construção de modelos que incorporem parâmetros de média móvel e autorregressiva. Estes modelos são frequentemente referidos como modelos mistos. Embora isso torne uma ferramenta de previsão mais complicada, a estrutura pode de fato simular melhor a série e produzir uma previsão mais precisa. Modelos puros implicam que a estrutura consiste apenas de AR ou MA parâmetros - não ambos. Os modelos desenvolvidos por esta abordagem são geralmente chamados de modelos ARIMA porque eles usam uma combinação de auto-regressão (RA), integração (I) - referindo-se ao processo inverso de diferenciação para produzir as operações de previsão e de média móvel (MA). Um modelo ARIMA é geralmente indicado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você tem um modelo autorregressivo de segunda ordem com um componente de média móvel de primeira ordem cuja série foi diferenciada uma vez para induzir a estacionaridade. Escolhendo a Especificação Direita: O principal problema no clássico Box-Jenkins está tentando decidir qual especificação ARIMA usar - i. e. Quantos parâmetros AR e / ou MA devem ser incluídos. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Ela dependia da avaliação gráfica e numérica das funções de autocorrelação da amostra e autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que parecem uma certa maneira. No entanto, quando você subir em complexidade, os padrões não são tão facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isto significa que os erros de amostragem (outliers, erro de medição, etc.) podem distorcer o processo de identificação teórica. Por isso, a modelagem ARIMA tradicional é mais uma arte do que uma ciência. Pressão - Média Móvel Integrada Autoregressiva (ARIMA) Este serviço implementa a Média Móvel Integrada Autoregressiva (ARIMA) para produzir previsões com base nos dados históricos fornecidos pelo usuário. Será que a demanda por um produto específico aumentar este ano Posso prever minhas vendas de produtos para a época do Natal, para que eu possa efetivamente planejar meu inventário Modelos de previsão são capazes de abordar essas questões. Dados os dados anteriores, esses modelos examinam tendências ocultas e sazonalidade para prever tendências futuras. Experimente o Azure Machine Learning gratuitamente. Nenhum cartão de crédito ou assinatura Azure é necessário. Comece agora gt Este serviço da Web pode ser consumido por usuários potencialmente através de um aplicativo para dispositivos móveis, por meio de um site, ou mesmo em um computador local, por exemplo. Mas a finalidade do serviço da correia fotorreceptora é servir igualmente como um exemplo de como o aprendizado da máquina de Azure pode ser usado para criar serviços da correia fotorreceptora sobre o código de R. Com apenas algumas linhas de código R e cliques de um botão no Azure Machine Learning Studio, uma experiência pode ser criada com o código R e publicada como um serviço da web. O serviço web pode então ser publicado para o Azure Marketplace e consumido por usuários e dispositivos em todo o mundo sem a instalação da infra-estrutura pelo autor do serviço web. Consumo de serviço web Este serviço aceita 4 argumentos e calcula as previsões ARIMA. Os argumentos de entrada são: Freqüência - Indica a freqüência dos dados brutos (diária / semanal / mensal / trimestral / anual). Horizon - Previsão de tempo futuro. Data - Adicione os novos dados da série de tempo para o tempo. Valor: adicione os novos valores de dados da série temporal. A saída do serviço é os valores de previsão calculados. Entrada de amostra poderia ser: Freqüência - 12 Horizon - 12 Data - 15/01/20172/15/20173/15/20174/15/20175/15/20176/15/20177/15/20178/15/20179/15/201710 / 15/2017/2017/2017/2017/2017/2017/2017/2017/2017/2017/2017/2017/2017/2017 / 15/201711/15/201712/15/2017 1/15/20172/15/20173/15/20174/15/20175/15/20176/15/20177/15/20178/15/20179/15/2017 Valor - 3.4793.683.8323.9413.7973.5863.5083.7313.9153.8443.6343.5493.5573.7853.7823.6013.5443.5563.653.7093.6823.511 3.4293.513.5233.5253.6263.6953.7113.7113.6933.5713.509 Este serviço, como hospedado no Mercado Azure, é um serviço OData estes podem Ser chamado através de métodos POST ou GET. Existem várias maneiras de consumir o serviço de forma automatizada (um exemplo de aplicativo está aqui). Iniciando o código C para o consumo de serviços da web: Criação de serviço web Este serviço da web foi criado usando o Azure Machine Learning. Para uma avaliação gratuita, bem como vídeos introdutórios sobre a criação de experiências e publicação de serviços da web. Por favor veja azure / ml. Abaixo está uma captura de tela da experiência que criou o serviço da web eo código de exemplo para cada um dos módulos dentro da experiência. A partir do Azure Machine Learning, foi criada uma nova experiência em branco. Os dados de entrada de amostra foram carregados com um esquema de dados predefinido. Ligado ao esquema de dados é um módulo Execute R Script, que gera o modelo de previsão ARIMA usando auto. arima e funções de previsão a partir de R. Fluxo de experiência: Módulo 1: Módulo 2: Limitações Este é um exemplo muito simples para previsão ARIMA. Como pode ser visto a partir do código de exemplo acima, nenhuma captura de erro é implementada, e o serviço assume que todas as variáveis são contínuas / valores positivos ea freqüência deve ser um inteiro maior que 1. O comprimento dos vetores de data e valor deve ser o mesmo. A variável data deve aderir ao formato mm / dd / aaaa. Perguntas mais freqüentes sobre o consumo do serviço da web ou publicação no mercado, veja aqui. Os processos de erro de média móvel de agressão (ARMA) e outros modelos que envolvem atrasos de termos de erro podem ser estimados usando declarações FIT e simulados ou previstos por Usando instruções SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados para modelos com resíduos autocorrelacionados. A macro AR pode ser usada para especificar modelos com processos de erro autorregressivo. A macro MA pode ser usada para especificar modelos com processos de erro de média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Observe que os s são independentes e identicamente distribuídos e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel, onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é automaticamente definido pelo PROC MODEL como A função ZLAG deve ser usada para que os modelos MA trunquem a recursividade dos atrasos. Isso garante que os erros defasados começam em zero na fase de antecipação e não propagam valores ausentes quando faltam as variáveis de período de latência e garantem que os erros futuros sejam zero e não desaparecidos durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. O modelo geral ARMA (p, q) tem a seguinte forma: Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros auto-regressivos e de média móvel para os vários desfasamentos. Você pode usar qualquer nome que desejar para essas variáveis, e há muitas maneiras equivalentes que a especificação poderia ser escrita. Os processos Vector ARMA também podem ser estimados com PROC MODEL. Por exemplo, um processo AR (1) de duas variáveis para os erros das duas variáveis endógenas Y1 e Y2 pode ser especificado da seguinte maneira: Problemas de Convergência com Modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ou porque as iterações se afastaram de valores razoáveis. Cuidado deve ser usado na escolha de valores iniciais para ARMA parâmetros. Os valores iniciais de 0,001 para os parâmetros ARMA normalmente funcionam se o modelo se encaixa bem nos dados eo problema está bem condicionado. Note-se que um modelo MA pode muitas vezes ser aproximado por um modelo de alta ordem AR, e vice-versa. Isso pode resultar em alta colinearidade em modelos ARMA mistos, o que por sua vez pode causar grave mal-condicionamento nos cálculos e instabilidade das estimativas dos parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma declaração FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos a zero (ou a estimativas anteriores razoáveis se disponíveis). Em seguida, use outra instrução FIT para estimar os parâmetros ARMA somente, usando os valores de parâmetro estrutural da primeira execução. Uma vez que os valores dos parâmetros estruturais são susceptíveis de estar perto de suas estimativas finais, as estimativas ARMA parâmetro agora pode convergir. Finalmente, use outra instrução FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros são agora provavelmente muito próximos de suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os retornos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos SAS / ETS são os seguintes: mínimos quadrados condicionais (procedimentos ARMA e MODELO) mínimos máximos incondicionais (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (Procedimento AUTOREG somente) Hildreth-Lu, que exclui as primeiras p observações (somente procedimento MODEL) Consulte o Capítulo 8, O Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As inicializações de CLS, ULS, ML e HL podem ser realizadas pelo PROC MODEL. Para erros de AR (1), estas inicializações podem ser produzidas como mostrado na Tabela 18.2. Estes métodos são equivalentes em amostras grandes. Tabela 18.2 Inicializações Executadas por PROC MODEL: AR (1) ERROS Os retornos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os seguintes paradigmas de inicialização de erros de média móvel são suportados pelos procedimentos ARIMA e MODELO: mínimos quadrados condicionais mínimos incondicionais O método de mínimos quadrados condicionais de estimativa de termos de erros de média móvel não é ótimo porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos atrasados iniciais, que se estendem antes do início dos dados, são assumidos como 0, o seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância da média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Normalmente, esta diferença converge rapidamente para 0, mas para processos de média móvel quase não-reversíveis a convergência é bastante lenta. Para minimizar esse problema, você deve ter abundância de dados, e as estimativas de parâmetros de média móvel devem estar bem dentro da faixa de inversão. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: Erros de média móvel podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) para o processo de média móvel. Um processo de média móvel geralmente pode ser bem aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A macro AR A macro SAS gera instruções de programação para MODELO PROC para modelos autorregressivos. A macro AR é parte do software SAS / ETS, e nenhuma opção especial precisa ser definida para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equações estruturais ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de auto-regressão: auto-regressão vetorial irrestrita auto-regressão vetorial restrita Autoregressão Univariada Para modelar o termo de erro de uma equação como um processo autorregressivo, use a seguinte instrução após a equação: Por exemplo, suponha que Y seja a Linear de X1, X2 e um erro de AR (2). Você escreveria este modelo da seguinte maneira: As chamadas para AR devem vir depois de todas as equações às quais o processo se aplica. A invocação de macro precedente, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída de opção LIST para um modelo AR (2) As variáveis prefixadas PRED são variáveis de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às instruções explicitamente escritas na seção Formulário Geral para Modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em defasagens selecionadas. Por exemplo, se você quisesse parâmetros autorregressivos nos retornos 1, 12 e 13, você pode usar as seguintes instruções: Estas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída de Opção LIST para um Modelo AR com Lags em 1, 12 e 13 O MODELO Procedimento Lista de Código de Programa Compilado como Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) il12 ZLAG12 (y - perdy) il13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PRED. y - y Existem Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais AR usa todas as observações e assume zeros para os retornos iniciais de termos autorregressivos. Usando a opção M, você pode solicitar que AR use o método de mínimos quadrados incondicionais (ULS) ou de máxima verossimilhança (ML). Por exemplo, as discussões sobre esses métodos são fornecidas na seção AR Condições iniciais. Usando a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos autorregressivos iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo autorregressivo à variável endógena, em vez de ao termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os cinco atrasos anteriores de Y à equação no exemplo anterior, você pode usar AR para gerar os parâmetros e os retornos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 Saída de opção LIST para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma interceptação e os valores de Y nos cinco períodos mais recentes. Auto-regressão vetorial irrestrita Para modelar os termos de erro de um conjunto de equações como um processo autorregressivo de vetor, use a seguinte forma da macro AR após as equações: O valor processname é qualquer nome que você fornecer para AR usar para fazer nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processo para cada conjunto. O nome do processo garante que os nomes de variáveis usados são exclusivos. Use um valor processname curto para o processo se as estimativas de parâmetro forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetro menor ou igual a oito caracteres, mas isso é limitado pelo comprimento de processname. Que é usado como um prefixo para os nomes de parâmetro AR. O valor da lista de variáveis é a lista de variáveis endógenas para as equações. Por exemplo, suponha que erros para as equações Y1, Y2 e Y3 sejam gerados por um processo autorregressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código semelhante para Y2 e Y3: Somente o método de mínimos quadrados condicional (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições de que a matriz de coeficientes seja 0 em intervalos selecionados. Por exemplo, as seguintes declarações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes com atraso 2 restrito a 0 e com os coeficientes nos retornos 1 e 3 sem restrições: Você pode modelar as três séries Y1Y3 como um processo autorregressivo de vetor Nas variáveis em vez de nos erros usando a opção TYPEV. Se você deseja modelar Y1Y3 como uma função de valores passados de Y1Y3 e algumas variáveis ou constantes exógenas, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregressiva do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregressiva do modelo pode ser uma função de variáveis exógenas, ou pode ser parâmetros de interceptação. Se não houver componentes exógenos para o modelo de auto-regressão do vetor, incluindo sem interceptações, então atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis antes de AR é chamado. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo tem 18 (3 3 3 3) parâmetros. Sintaxe da Macro AR Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem a forma geral especifica um prefixo para AR a ser usado na construção de nomes de variáveis necessários para definir o processo AR. Se o endolist não é especificado, a lista endógena padrão é nome. Que deve ser o nome da equação à qual o processo de erro AR deve ser aplicado. O valor de nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Se for dado mais de um nome, é criado um processo vetorial sem restrições com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolist predefinirá o nome. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos AR de AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis endógenas em vez de aos resíduos estruturais das equações. Auto-regressão vetorial restrito Você pode controlar quais parâmetros são incluídos no processo, restringindo a 0 aqueles parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis e definir a dimensão do processo. Em seguida, use chamadas AR adicionais para gerar termos para equações selecionadas com variáveis selecionadas em intervalos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo estabelece que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas com atraso 1. AR Macro Sintaxe para AR Restrito AR Um uso alternativo de AR é permitido para impor restrições em um processo AR vetorial chamando AR várias vezes para especificar diferentes AR termos e defasagens para diferentes Equações. A primeira chamada tem a forma geral especifica um prefixo para AR para usar na construção de nomes de variáveis necessárias para definir o vetor AR processo. Especifica a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR mas é esperar por mais informações especificadas em chamadas AR mais tarde para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolist da primeira chamada para o valor de nome podem aparecer na lista de equações na lista de eqlist. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. Somente nomes no endolist da primeira chamada para o valor de nome podem aparecer em varlist. Se não for especificado, varlist padrão para endolist. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist irá usar todos os intervalos 1 a nlag. A macro MA A macro SAS MA gera instruções de programação para MODELO PROC para modelos de média móvel. A macro MA faz parte do software SAS / ETS e não são necessárias opções especiais para utilizar a macro. O processo de erro de média móvel pode ser aplicado aos erros da equação estrutural. A sintaxe da macro MA é o mesmo que a macro AR, exceto que não há argumento TYPE. Quando você estiver usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SAS / IML produzem um processo de erro ARMA (1, (1 3)) e salvam-no no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: As estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um processo ARMA (1, (1 3)) Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo MA de vetor não são necessárias, a sintaxe da macro MA tem a forma geral especifica um prefixo para MA usar na construção de nomes de variáveis necessárias para definir o processo MA e é o endolist padrão. É a ordem do processo MA. Especifica as equações às quais o processo MA deve ser aplicado. Se for dado mais de um nome, a estimativa de CLS é usada para o processo de vetor. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolist. MA Sintaxe de Macro para Movimentação-Média de Vetores Restrita Um uso alternativo de MA é permitido para impor restrições em um processo de MA de vetor chamando MA várias vezes para especificar diferentes termos de MA e defasagens para equações diferentes. A primeira chamada tem a forma geral especifica um prefixo para MA para usar na construção de nomes de variáveis necessárias para definir o vetor MA processo. Especifica a ordem do processo MA. Especifica a lista de equações às quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo de MA mas é aguardar informações adicionais especificadas em chamadas de MA posterior para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. Especifica a lista de defasagens em que os termos MA devem ser adicionados. A documentação é a média incondicional do processo e x03C8 (L) é um polinômio racional de operador de intervalo infinito, (1 x03C8 1 L x03C8 2 L 2 x2026 ). Nota: A propriedade Constant de um objeto modelo arima corresponde a c. E não a média incondicional 956. Por decomposição de Wolds 1. A equação 5-12 corresponde a um processo estocástico estacionário desde que os coeficientes x03C8 i sejam absolutamente somaveis. Este é o caso quando o polinômio AR, x03D5 (L). É estável. O que significa que todas as suas raízes estão fora do círculo unitário. Além disso, o processo é causal desde que o polinômio MA é invertido. O que significa que todas as suas raízes estão fora do círculo unitário. Econometrics Toolbox reforça a estabilidade e a invertibilidade dos processos ARMA. Quando você especifica um modelo ARMA usando arima. Você obtém um erro se você inserir coeficientes que não correspondem a um polinômio AR estável ou polinômio MA reversível. Similarmente, a estimativa impõe restrições de estacionaridade e de invertibilidade durante a estimativa. Referências 1 Wold, H. Um estudo na análise de séries estacionárias do tempo. Uppsala, Suécia: Almqvist amp Wiksell, 1938. Selecione o país
Comments
Post a Comment