Ar moving average
Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é frequentemente o primeiro, e um dos mais úteis, estatísticas de resumo a calcular. Quando os dados estão na forma de uma série temporal, a média da série é uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos em curto, anteriores ao período atual ou centrados no período atual, são freqüentemente mais úteis. Como esses valores médios variam, ou se movem, à medida que o período atual se move a partir do tempo t 2, t 3, etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel exponencialmente ponderada é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela sua proximidade ao tempo actual. Como não existe uma, mas toda uma série de médias móveis para uma dada série, o conjunto de Mas pode ser plotado em gráficos, analisado como uma série e usado na modelagem e previsão. Uma série de modelos pode ser construída usando médias móveis, e estes são conhecidos como modelos MA. Se tais modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média destes valores pode ser calculada. Se assumimos que n é bastante grande, e selecionamos um inteiro k que é muito menor que n. Podemos calcular um conjunto de médias de blocos, ou médias móveis simples (de ordem k): Cada medida representa a média dos valores de dados ao longo de um intervalo de k observações. Observe que o primeiro MA possível de ordem k gt0 é aquele para t k. De modo mais geral, podemos descartar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no instante t e os intervalos de tempo anteriores k-1. Se forem aplicados pesos que diminuam a contribuição de observações que estão mais distantes no tempo, a média móvel é dita ser suavizada exponencialmente. As médias móveis são frequentemente utilizadas como uma forma de previsão, pelo que o valor estimado para uma série no tempo t 1, S t 1. É tomado como MA para o período até e incluindo o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores anteriores registrados até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados de poluição atmosférica mostrado na introdução deste tópico foi aumentado por uma linha de 7 dias de média móvel (MA), mostrada aqui em vermelho. Como pode ser visto, a linha de MA suaviza os picos e depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula padrão de cálculo de forward significa que os primeiros k -1 pontos de dados não têm nenhum valor de MA, mas a partir daí os cálculos se estendem até o ponto de dados final da série. Uma razão para computar médias móveis simples na maneira descrita é que permite que os valores sejam computados para todos os entalhes do tempo do tempo tk até o presente , E como uma nova medição é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem alguns problemas com esta abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, digamos, deve ser localizado no tempo t -1, não no tempo t. E para um MA sobre um número par de períodos, talvez ele deve ser localizado no ponto médio entre dois intervalos de tempo. Uma solução para este problema é usar cálculos centralizados MA, em que o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, esta abordagem não é geralmente utilizada porque exige que os dados estão disponíveis para eventos futuros, o que pode não ser o caso. Em casos onde a análise é inteiramente de uma série existente, o uso de Mas centralizado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, removendo alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) as tendências de forma semelhante à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar um cálculo da média móvel a uma série que já tenha sido suavizada, isto é, suavizar ou filtrar uma série já suavizada. Por exemplo, com uma média móvel de ordem 2, podemos considerá-la como sendo calculada usando pesos, então a MA em x 2 0,5 x 1 0,5 x 2. Da mesma forma, a MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 ou seja, a filtragem de 2 estádios Processo (ou convolução) produziu uma média móvel simétrica ponderada variável, com pesos. Várias circunvoluções podem produzir médias móveis ponderadas bastante complexas, algumas das quais foram encontradas de uso particular em campos especializados, como nos cálculos do seguro de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computado com o comprimento da periodicidade como um conhecido. Por exemplo, com os dados mensais as variações sazonais podem frequentemente ser removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro eo último que são ponderados por 1/2. Isto é porque haverá 13 meses no modelo simétrico (tempo atual, t. / - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis exponencialmente ponderadas (EWMA) Com a fórmula da média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos k pesos seria igual a 1 / k. Então a soma dos pesos seria 1, ea fórmula seria: Já vimos que múltiplas aplicações deste processo resultam em pesos variando. Com médias móveis exponencialmente ponderadas, a contribuição para o valor médio das observações que são mais removidas no tempo é deliberada reduzida, enfatizando os eventos mais recentes (locais). Essencialmente um parâmetro de suavização, 0lt alfa lt1, é introduzido, ea fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: Se os pesos no modelo simétrico são selecionados como os termos dos termos da expansão binomial, (1/21/2) 2q. Eles somarão a 1, e quando q se tornar grande, aproximar-se-á da distribuição Normal. Esta é uma forma de ponderação do kernel, com o binômio agindo como a função do kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esta disposição, com q 1, produzindo os pesos. Em suavização exponencial é necessário usar um conjunto de pesos que somam a 1 e que reduzem em tamanho geometricamente. Os pesos usados são tipicamente da forma: Para mostrar que esses pesos somam 1, considere a expansão de 1 / como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1-x) p. Onde x (1-) e p -1, o que dá: Isso então fornece uma forma de média móvel ponderada da forma: Esta soma pode ser escrita como uma relação de recorrência: o que simplifica muito a computação e evita o problema de que o regime de ponderação Deve ser rigorosamente infinito para os pesos a somar a 1 (para pequenos valores de alfa, isso normalmente não é o caso). A notação utilizada pelos diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escrevem: enquanto a literatura da teoria de controle usa freqüentemente Z em vez de S para os valores exponencialmente ponderados ou suavizados (ver, por exemplo, Lucas e Saccucci, 1990, LUC1 , Eo site do NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com alfa 1, a estimativa média é simplesmente o seu valor medido (ou o valor do item de dados anterior). Com 0,5 a estimativa é a média móvel simples das medições atuais e anteriores. Nos modelos de previsão, o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isto mostra que o valor da previsão no tempo t 1 é uma combinação da média móvel exponencialmente ponderada anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Supondo que uma série de tempo é dada e uma previsão é necessária, um valor para alfa é necessário. Isso pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados obtidos com valores variáveis de alfa para cada t 2,3. Definindo a primeira estimativa como sendo o primeiro valor de dados observado, x 1. Em aplicações de controle o valor de alfa é importante na medida em que é usado na determinação dos limites de controle superior e inferior, e afeta o comprimento de execução médio (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que as séries temporais representam um conjunto de variáveis independentes, aleatoriamente distribuídas, com variância comum). Nestas circunstâncias, a variância da estatística de controlo é (Lucas e Saccucci, 1990): Os limites de controlo são normalmente definidos como múltiplos fixos desta variância assintótica, p. / - 3 vezes o desvio padrão. Se alfa 0,25, por exemplo, e os dados monitorados forem assumidos como tendo uma distribuição Normal, N (0,1), quando em controle, os limites de controle serão de - 1,134 eo processo atingirá um ou outro limite em 500 Passos em média. Lucas e Saccucci (1990 LUC1) derivam as ARLs para uma ampla gama de valores alfa e sob várias suposições usando procedimentos de Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARLs quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com um deslocamento 0,5 com alfa 0,25 o ARL é menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Como os procedimentos são aplicados uma vez para a série de tempo e, em seguida, análises ou processos de controle são realizadas no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, a suavização exponencial de dois ou três estágios pode ser aplicada como um meio de remover (explicitamente modelar) esses efeitos (consulte a seção sobre Previsão abaixo e o exemplo trabalhado do NIST ). CHA1 Chatfield C (1975) A análise de séries de tempos: teoria e prática. Chapman e Hall, Londres HUN1 Hunter J S (1986) A média móvel exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de Controlo de Média Móvel Ponderados Exponencialmente: Propriedades e Melhoramentos. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de gráficos de controle baseados em médias móveis geométricas. Modelos de média móvel Em vez de usar valores passados da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados em um modelo de regressão. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). É claro que não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só mudará a escala da série, não os padrões. É possível escrever qualquer modelo AR (p) estacionário como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e amptext final Fornecido -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Modelos Invertiveis não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Mais uma vez, R vai cuidar dessas restrições ao estimar os models. You estão sendo direcionados para ZacksTrade, uma divisão da LBMZ Securities e licenciado corretor-revendedor. ZacksTrade e Zacks são empresas separadas. O link da web entre as duas empresas não é uma solicitação ou oferta para investir em uma determinada segurança ou tipo de segurança. A ZacksTrade não endossa ou adota nenhuma estratégia de investimento específica, qualquer opinião / rating / relatório de analista ou qualquer abordagem para avaliar títulos individuais. Se você deseja ir para ZacksTrade, clique em OK. Se não o fizer, clique em Cancelar. Antero Resources Corp (AR - Snapshot Report) pode ser uma escolha sólida para investidores técnicos, uma vez que a empresa viu algumas boas notícias Com seu crossover de média móvel. AR apenas viu a sua média de 50 dias Moving Break acima de seu 200 dias Simple Moving Average, o que significa que poderia haver algum bullishness de curto prazo para o estoque. Você poderia definitivamente argumentar que isso já começou a ter lugar, como partes de AR saltou por 9,9 nas 4 semanas à direita. Se isso não era suficiente, a empresa atualmente possui um Zacks Rank 1 (Strong Buy), para que ele poderia ter mais espaço para correr nas próximas semanas também. Mais bullishness pode especialmente ser o caso quando os investors consideram o que tem acontecido para o AR na revisão da revisão da estimativa dos salários ultimamente. Nenhuma estimativa foi mais baixa nos últimos dois meses, em comparação com 1 maior, enquanto a estimativa de consenso também se movimentou mais alto também. Assim, dado este movimento nas estimativas, e os fatores técnicos positivos, os investidores podem querer assistir a este candidato breakout de perto para mais ganhos no futuro próximo. Quer as últimas recomendações da Zacks Investment Research Hoje, você pode baixar 7 melhores ações para os próximos 30 dias. Clique aqui para obter este relatório gratuito gtgt In-Depth Pesquisa Zacks para os Tickers Above Notícias Zacks para (AR) Por que recursos Antero Resources (AR) pode ser um ótimo Pick 08/17 / 16-7: 46AM EST Zacks TC PipeLines (TCP) Batidas em Q2 Ganhos, Receitas Acima de Y / Y 08/08 / 16-6: 31AM EST Zacks 5 estoques líquidos para um Fluxo estável de retornos altos 08/05 / 16-9: 23AM EST Zacks Marathon Oil (MRO) Posts Narrower - 08-ago-08: 08h09 Zacks Western Refining (WNR) bate em Q2 ganhos amp Revenue 08/03 / 16-9: 59AM EST Zacks Outros Notícias para (AR) Enerplus: O Marcellus Divestinação maio 10/06 / 16-6: 15AM EST Buscando Alpha Quais são as recomendações dos analistas para Chesapeake 10/05 / 16-7: 16 AM EST Market Realist Marcellus Valorização de ativos Movendo-se mais alto 10/05 / 16-4: 36AM EST Pesquisando Alpha Marcellus Asst Valuations Movendo-se mais alto 10/05 / 16-4: 31AM EST Procurando Alpha Quais são os analistas Recomendações para EQT, NBL, COG e AR 10/04 / 16-9: 15 AM EST Mercado Realist Zacks Releases 7 Melhor Stocks para 2017 Estes 7 foram escolhidos a dedo da lista de 220 Zacks Rank 1 Strong Buys com estimativas de ganhos revisões que estão varrendo para cima. Espera-se que seus preços das ações subam mais cedo do que os outros. Hoje, este Relatório Especial estará disponível para os novos visitantes Zacks gratuitamente. Política de Privacidade Sem custo, sem obrigação de comprar qualquer coisa. Fechar este Painel X Zacks 1 Rank Principais Movers para 6 Out, 2017 Zacks 1 Rank Principais Movers Zacks 1 Rank Principais Movers para 10/06/16 Links Rápidos Serviços Minha Conta Recursos Suporte ao Cliente Siga-nos Zacks Pesquisa é relatada Em: Zacks Investment Research é Um negócio avaliado BBB BBB. Copyright 2017 Zacks Investment Research No centro de tudo o que fazemos é um forte compromisso com a pesquisa independente e compartilhar suas descobertas lucrativas com os investidores. Esta dedicação para dar aos investidores uma vantagem comercial levou à criação do nosso comprovado Zacks Rank sistema de classificação de ações. Desde 1988 quase triplicou o SampP 500 com um ganho médio de 26 por ano. Esses retornos abrangem um período de 1988 a 2017 e foram examinados e atestados pela Baker Tilly Virchow Krause, LLP, uma empresa de contabilidade independente. Visite o desempenho para obter informações sobre os números de desempenho exibidos acima. Visite zacksdata para obter os nossos dados e conteúdo para o seu aplicativo para dispositivos móveis ou website. Preços em tempo real por BATS. Cotações atrasadas por Sungard. Os dados da NYSE e da AMEX têm pelo menos 20 minutos de atraso. Os dados NASDAQ têm pelo menos 15 minutos de atraso.2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos auto-regressivos e / ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de série temporal para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt overset N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel da 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar o software para verificar se sinais negativos ou positivos foram utilizados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades teóricas de uma série temporal com um modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Valores das duas autocorrelações não nulas são Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico da série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, o ACF de amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O 1/1 recíproco dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 / (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto que 1 1 / 0,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de AR diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 atrasos de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. trama (Hg) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto (a0) Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos 1 a 10. O parâmetro ylab rotula o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer média 10. Padrão de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a ACF da amostra para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (atrasos, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, principal série MA (2) simulada) acf (x, xlimc (1,10), x2) MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo inversível MA é aquele que pode ser escrito como um modelo de ordem infinita AR que converge para que os coeficientes AR convergem para 0 como nos movemos infinitamente no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substituimos a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertido. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos remontando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que uma exigência para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Processos estacionários autoregressivos (AR) Os processos estacionários autoregressivos (AR) possuem funções teóricas de autocorrelação (ACFs) que decrescem em direção a zero, em vez de cortar para zero. Os coeficientes de autocorrelação podem alternar no sinal com freqüência, ou mostrar um padrão ondulatório, mas em todos os casos, eles caem em direção a zero. Em contrapartida, os processos AR com ordem p têm funções de autocorrelação parcial teórica (PACF) que são cortadas para zero após o retardo p. Processo de média móvel (MA) As ACFs teóricas dos processos MA (média móvel) com a ordem q são cortadas para zero após o retardo q, a ordem MA Do processo. Entretanto, seus PACFs teóricos desmoronam em direção a zero. Processo estacionário misto (ARMA) Processos estacionários mistos (ARMA) mostram uma mistura de AR e MA características. Tanto o ACF teórico quanto o PACF desviam-se para zero. Copyright 2017 Minitab Inc. Todos os direitos reservados.
Comments
Post a Comment